Bike Shop

Gena Gizzi, Eugene Koval,
Thai Nghiem, Kevin Trinh

Polymorphic Collections

* Inventory list

» A collection of products filled with objects of different dynamic types that all extend
either the Bike or Accessory interface, which both extend the Product interface

« Bikes: BMX, MountainBike, TandemBike, Cruiser, Unicycle

» Accessories: Light, Helmet, AirPump

Predicate<Product> isBike = product -»> product instanceof Bike;
Set<Product> bikeSet = acclist.keySet().stream().filter(isBike).collect(Collectors.toSet());
bikeStream = inventory.filterInventory(isBike);

Interfaces

« Buyable
 Represents anything that may be purchased
« Method signatures to calculate and return retail cost
» Rentable
 Represents anything that may be rented out for an hourly fee
 Method signatures to calculate deposit and hourly fee
» Display
* Frames that implement this will be able to change view states

 Method signature to set frames view to the view passed as parameter

Abstract Classes

« Offer an easy way to represent the generic or abstract form of all the classes
that are derived from it
« Product - represents the most generic form of a product sold at the shop
 Bike
» Abstract class that extends Product
» Used to represent the most generic form of bikes sold
« BMX, MountainBike, Cruiser are classes that extend Bike
« Accessory
* Also extends Product
» Used to represent the most generic form of accessories sold
« AirPump, Light, Helmet are classes that extend Accessory

Abstract Classes

* Person - represents the most generic form of a person at the shop
« Customer
» Concrete class that extends Person

 Represents a customer at the shop

- View - represents the most generic views that a user interface can display
 BikeView
 Extends view
» Represents more specific view of bikes

* LogInView, ProductsView, GreetingView are classes that extend BikeView

GUI

« Challenging aspects:
» Filtering and displaying products
« Changing views
« Getting different layout views to look the desired way

« Taking everyone’s individual code and combining them successfully

Customized Error Handling

« Customerrecord validation
« Customer must input valid information when creating an account or logging on

« Exceptions are thrown and errors are displayed if customer tries to input invalid
information

* lllegal email exception
 Email must have ‘@’ character and must fit regular expression pattern
« lllegal password exception

 Password must be greater than 6 characters

Customized Error Handling

« Cost format exception « Invalid product exception
« Cost - abstract data type that « Exception is thrown if an invalid
represents money and has add product is listed in the CSV file
and subtract methods that is being imported

« Exception is thrown when there
is an error parsing the cost

File Input/Output

 File input
« CSV file imported using

BufferedReader and FileReader

* File data contains list of
products, model, make, current
inventory, prices

File output

Customer information records
are serialized and saved to an
output file

Serialized files are deserialized
when customer logs in and
views account information

Design Patterns

* Model-View-Controller (MVC)

« Software architecture that separates
application into three parts: model,
view, controller

« Defines the roles that objects play
and the way they communicate

 Model - products
* View - panels and frames

e Controller - views of GUI

Visitor

Command pattern that defines a
new operation separate from the
object structure on which it
operates

« Application separates views
from the frame containing
them

Team Contributions

Gena Gizzi

Customer records
Validation and error handling

GUI

Eugene Koval

File 1/0 serialization
Validation and error handling
Inventory

GUI

Thai Nghiem

Customer cart
Sequence Diagram

Class Diagram

Kevin Trinh

Products Filter

GUI

